A Comprehensive Literature Review on Transportation Problems

A systematic and organized overview of various existing transportation problems and their extensions developed by different researchers is offered in the review article. The article has gone through different research papers and books available in Google scholar, Sciencedirect, Z-library Asia, Springer.com, Research-gate, shodhganga, and many other E-learning platforms. The main purpose of the review paper is to recapitulate the existing form of various types of transportation problems and their systematic developments for the guidance of future researchers to help them classify the varieties of problems to be solved and select the criteria to be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

Preface: operations research for transportation

Article 12 December 2018

On Optimization Problems in Urban Transport

Chapter © 2018

Computational Intelligence and Optimization for Transportation Big Data: Challenges and Opportunities

Chapter © 2015

Data Availability

No data is used to prepare this article.

References

  1. Monge, G.: The founding fathers of optimal transport. Springer, Cham (1781) Google Scholar
  2. Tolstoĭ, A.: On the history of the transportation and maximum flow problems. Math. Program. 91, 437–445 (1930) MathSciNetGoogle Scholar
  3. Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). https://doi.org/10.1287/mnsc.6.4.366ArticleMathSciNetMATHGoogle Scholar
  4. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20(1–4), 224–230 (1941). https://doi.org/10.1002/sapm1941201224ArticleMathSciNetMATHGoogle Scholar
  5. Koopmans, T.: A model of transportation. Act. Anal. Prod. Alloc. (1951). http://web.eecs.umich.edu/~pettie/matching/Koopmans-Reiter-mincost-flow-model-Cowlescommision-report.pdf. Accessed 12 Oct 2020
  6. Charnes, A., Cooper, W.W.: The stepping stone method of explaining linear programming calculations in transportation problems. Manag. Sci. 1(1), 49–69 (1954). https://doi.org/10.1287/mnsc.1.1.49ArticleMathSciNetMATHGoogle Scholar
  7. Dantzig, G.: Application of the simplex method to a transportation problem. Act. Anal. Prod. Alloc. (1951). https://ci.nii.ac.jp/naid/10021311930/. Accessed 12 Oct 2020
  8. Hitchcock, F.: The distribution of a product from several sources to numerous localities. Int. J. Pharm. Technol. 8(1), 3554–3570 (2016) Google Scholar
  9. Sungeeta, S., Renu, T., Deepali, S.: A review on fuzzy and stochastic extensions of the Multi Index transportation problem. Yugoslav. J. Oper. Res. 27(1), 3–29 (2017) ArticleMathSciNetMATHGoogle Scholar
  10. Gupta, R., Komal.: Literature Survey on Single and Multi-Objective Transportation Problems. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur - India (2019)
  11. Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Manag. Sci. 14(3), 205–220 (1967). https://doi.org/10.1287/mnsc.14.3.205ArticleMATHGoogle Scholar
  12. Lee, S.M., Moore, L.J.: Optimizing transportation problems with multiple objectives. AIIE Trans. 5(4), 333–338 (1973). https://doi.org/10.1080/05695557308974920ArticleGoogle Scholar
  13. Kwak, N., Schniederjans, M.J.: A goal programming model for improved transportation problem solutions. Omega 7, 367–370 (1979).https://www.sciencedirect.com/science/article/pii/0305048379900458. Accessed 12 Oct 2020 ArticleGoogle Scholar
  14. Ahuja, R.K.: Algorithms for the minimax transportation problem. Nav. Res. Logist. Q. 33(4), 725–739 (1986). https://doi.org/10.1002/nav.3800330415ArticleMathSciNetMATHGoogle Scholar
  15. Currin, D.C.: Transportation problems with inadmissible routes. J. Oper. Res. Soc. 37(4), 387–396 (1986). https://doi.org/10.1057/jors.1986.66ArticleMATHGoogle Scholar
  16. Shafaat, A., Goyal, S.K.: Resolution of degeneracy in transportation problems. J. Oper. Res. Soc. 39(4), 411–413 (1988). https://doi.org/10.1057/jors.1988.69ArticleMATHGoogle Scholar
  17. Arsham, H., Kahn, A.B.: A simplex-type algorithm for general transportation problems: an alternative to stepping-stone. J. Oper. Res. Soc. 40(6), 581–590 (1989). https://doi.org/10.1057/jors.1989.95ArticleMATHGoogle Scholar
  18. Kirca, Ö., Şatir, A.: A heuristic for obtaining an initial solution for the transportation problem. J. Oper. Res. Soc. 41(9), 865–871 (1990). https://doi.org/10.1057/jors.1990.124ArticleMATHGoogle Scholar
  19. Goczyłla, K., Cielatkowski, J.: Optimal routing in a transportation network. Eur. J. Oper. Res. 87, 214–222 (1995) ArticleMATHGoogle Scholar
  20. Adlakha, V., Kowalski, K.: An alternative solution algorithm for certain transportation problems. Int. J. Math. Educ. Sci. Technol. 30(5), 719–728 (2010). https://doi.org/10.1080/002073999287716ArticleMathSciNetMATHGoogle Scholar
  21. Minghe, S.: The transportation problem with exclusionary side constraints and two branch-and-bound algorithms. Eur. J. Oper. Res. 140, 629–647 (2002) ArticleMathSciNetMATHGoogle Scholar
  22. Sharma, R., Gaur, A., Okunbor, D.: Management decision-making for transportation problems through goal programming. J. Acad. Bus. Econ. 4, 195 (2004) Google Scholar
  23. Imam, T., Elsharawy, G., Gomah, M., Samy, I.: Solving transportation problem using object-oriented model. IJCSNS 9, 353 (2009) Google Scholar
  24. Adlakha, V.: Alternate solutions analysis for transportation problems (2009). https://clutejournals.com/index.php/JBER/article/view/2354. Accessed 12 Oct 2020
  25. Pandian, P., Natarajan, G.: A new method for finding an optimal solution for transportation problems. Int. J. Math. Sci. Eng. Appl. 4, 59–65 (2010) MathSciNetMATHGoogle Scholar
  26. Korukoğlu, S., Ballı, S.: An improved Vogel’s approximation method for the transportation problem. Math. Comput. Appl. 16, 370–381 (2011) Google Scholar
  27. Sharma, G., Abbas, S., Gupta, V.: Solving transportation problem with the various method of a linear programming problem. Asian J. Curr. Eng. Maths 1, 81–83 (2012) Google Scholar
  28. Sharma, G., Abbas, S., Gupta, V.K.: Solving transportation problem with the help of integer programming problem. IOSR J. Eng. 2, 1274–1277 (2012) ArticleGoogle Scholar
  29. Joshi, R.V.: Optimization techniques for transportation problems of three variables. IOSR J. Math. 9, 46–50 (2013) ArticleGoogle Scholar
  30. Rekha, S., Srividhya, B., Vidya, S.: Transportation cost minimization: max–min penalty approach. IOSR J. Math. 10, 6–8 (2014) ArticleGoogle Scholar
  31. Azad, S., Hossain, M., Rahman, M.: An algorithmic approach to solve transportation problems with the average total opportunity cost method. Int. J. Sci. Res. Publ. 7, 262–270 (2017) Google Scholar
  32. Singh, S.: Note on transportation problem with a new method for the resolution of degeneracy. Univers. J. Ind. Bus. Manag. 3, 26–36 (2015) ArticleGoogle Scholar
  33. Palanievel, M., Suganya, M.: A new method to solve transportation problem-Harmonic Mean approach. Eng. Technol. Open Access J. 2, 1–3 (2018) Google Scholar
  34. Charnes, A., Klingman, D.: The more-for-less paradox in the distribution model. Cahiers du Centre d’Etudes de Recherche Operationelle 13, 11–22 (1971) MathSciNetMATHGoogle Scholar
  35. Klingman, D., Russell, R.: The transportation problem with mixed constraints. J. Oper. Res. Soc. 25(3), 447–455 (1974). https://doi.org/10.1057/jors.1974.78ArticleMathSciNetMATHGoogle Scholar
  36. Robb, D.J.: The ‘more for less’ paradox in distribution models: an intuitive explanation. IIE Trans. 22(4), 377–378 (2007). https://doi.org/10.1080/07408179008964192ArticleMathSciNetGoogle Scholar
  37. Arora, S., Ahuja, A.: A paradox in a fixed charge transportation problem. Indian J. Pure Appl. Math. 31, 809–822 (2000) MathSciNetMATHGoogle Scholar
  38. Adlakha, V., Kowalski, K.: A heuristic method for ‘more-for-less’ in distribution-related problems. Int. J. Math. Educ. Sci. Technol. 32(1), 61–71 (2001). https://doi.org/10.1080/00207390117225ArticleGoogle Scholar
  39. Adlakha, V., Kowalski, K., Lev, B.: Solving transportation problems with mixed constraints. Int. J. Manag. Sci. Eng. Manag. 1(1), 47–52 (2006). https://doi.org/10.1080/17509653.2006.10670996ArticleGoogle Scholar
  40. Storøy, S.: The transportation paradox revisited (2007). http://web.ist.utl.pt/mcasquilho/compute/_linpro/2007Storoy.pdf. Accessed 13 Oct 2020
  41. Pandian, P., Natarajan, G.: Fourier methods for solving transportation problems with mixed constraints. Int. J. Contemp. Math. Sci. 5, 1385–1395 (2010) MathSciNetMATHGoogle Scholar
  42. Joshi, V., Gupta, N.: Linear fractional transportation problem with varying demand and supply Vishwas Deep Joshi–Nilama Gupta. Matematiche (Catania) (2011). https://doi.org/10.4418/2011.66.2.1ArticleGoogle Scholar
  43. Joshi, V.D., Gupta, N.: Identifying more-for-less paradox in the linear fractional transportation problem using objective matrix (2012). https://matematika.utm.my/index.php/matematika/article/view/572. Accessed 13 Oct 2020
  44. Pandian, P., Anuradha, D.: Path method for finding a more-for-less optimal solution to transportation problems. In: International Conference on Mathematical Computer Engineering (2013)
  45. George, A.O., Jude, O., Anderson, C.N.: Paradox algorithm in application of a linear transportation problem. Am. J. Appl. Math. Stat. 2, 10–15 (2014) ArticleGoogle Scholar
  46. Gupta, S., Ali, I., Ahmed, A.: Multi-choice multi-objective capacitated transportation problem: a case study of uncertain demand and supply. J. Stat. Manag. Syst. 21(3), 467–491 (2018). https://doi.org/10.1080/09720510.2018.1437943ArticleGoogle Scholar
  47. Agarwal, S., Sharma, S.: A shootout method for time minimizing transportation problem with mixed constraints. Am. J. Math. Manag. Sci. 39(4), 299–314 (2020). https://doi.org/10.1080/01966324.2020.1730274ArticleGoogle Scholar
  48. Hammer, P.L.: Time-minimizing transportation problems. Nav. Res. Logist. Q. 16(3), 345–357 (1969). https://doi.org/10.1002/nav.3800160307ArticleMathSciNetMATHGoogle Scholar
  49. Garfinkel, R.S., Rao, M.R.: The bottleneck transportation problem. Nav. Res. Logist. Q. 18(4), 465–472 (1971). https://doi.org/10.1002/nav.3800180404ArticleMathSciNetMATHGoogle Scholar
  50. Szwarc, W.: Some remarks on the time transportation problem. Nav. Res. Logist. Q. 18(4), 473–485 (1971). https://doi.org/10.1002/nav.3800180405ArticleMathSciNetMATHGoogle Scholar
  51. Sharma, J., Swarup, K.: Time minimizing transportation problems. In: Proceedings of the Indian Academy of Sciences (1977)
  52. Varadarajan, R.: An optimal algorithm for 2× n bottleneck transportation problem. Oper. Res. Lett. 10, 525–529 (1991) ArticleMathSciNetMATHGoogle Scholar
  53. Geetha, S., Nair, K.P.: A stochastic bottleneck transportation problem. J. Oper. Res. Soc. 45(5), 583–588 (1994). https://doi.org/10.1057/jors.1994.86ArticleMATHGoogle Scholar
  54. Nikolić, I.: Total time minimizing transportation problem. Yugosl. J. Oper. Res. 17, 125–133 (2007). https://doi.org/10.2298/YUJOR0701125NArticleMathSciNetMATHGoogle Scholar
  55. Pandian, P., Natarajan, G.: A new method for solving bottleneck-cost transportation problems. In: International Mathematical Forum (2011)
  56. Jain, M., Saksena, P.K.: Time minimizing transportation problem with fractional bottleneck objective function. Yugosl. J. Oper. Res. 22, 115–129 (2012). https://doi.org/10.2298/YJOR100818004JArticleMathSciNetMATHGoogle Scholar
  57. Kolman, P.: Time minimizing transportation problems with partial limitations of transported amount for transport participants. In: AIP Conference Proceedings, vol. 1648 (2015). https://doi.org/10.1063/1.4912945
  58. Waldherr, S., Poppenborg, J., Knust, S.: The bottleneck transportation problem with auxiliary resources. 4OR 13(3), 279–292 (2015). https://doi.org/10.1007/s10288-015-0284-9ArticleMathSciNetMATHGoogle Scholar
  59. Dhanapal, A., Sobana, V.E., Anuradha, D.: On solving bottleneck bi-criteria fuzzy transportation problems. Int. J. Eng. Technol. 7, 547–551 (2018) ArticleGoogle Scholar
  60. Vidhya, V., Ganesan, K.: A simple method for the solution of bottleneck-cost transportation problem under fuzzy environment. In: AIP Conference Proceedings, vol. 2277, no. 1, p. 090008 (2020). https://doi.org/10.1063/5.0026105
  61. Agarwal, S., Sharma, S.: A shootout method for time minimizing transportation problem with mixed constraints. Am. J. Math. Manag. Sci. (2020). https://doi.org/10.1080/01966324.2020.1730274ArticleGoogle Scholar
  62. Haley, K.B.: New methods in mathematical programming: the solid transportation problem. Oper. Res. 10(4), 448–463 (1962). https://doi.org/10.1287/opre.10.4.448ArticleMATHGoogle Scholar
  63. Shell, E.: Distribution of product by several properties. In: Proceedings of the Second Symposium in Linear Programming (1955)
  64. Sharma, J.: Extensions and special cases of transportation problem: a survey (1978). Accessed 03 Dec 2020
  65. Haley, K.B.: The existence of a solution to the multi-index problem. J. Oper. Res. Soc. 16(4), 471–474 (1965). https://doi.org/10.1057/jors.1965.81ArticleGoogle Scholar
  66. Morávek, J., Vlach, M.: Letter to the Editor—On the necessary conditions for the existence of the solution of the multi-index transportation problem. Oper. Res. 15(3), 542–545 (1967). https://doi.org/10.1287/opre.15.3.542ArticleMATHGoogle Scholar
  67. Smith, G.: A procedure for determining necessary and sufficient conditions for the existence of a solution to the multi-index problem. Aplikace matematiky 19(3), 177–183 (1974) MathSciNetMATHGoogle Scholar
  68. Vlach, M.: Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discrete Appl. Math. 13, 61–78 (1986) ArticleMathSciNetMATHGoogle Scholar
  69. Junginger, W.: On representatives of multi-index transportation problems. Eur. J. Oper. Res. 66, 353–371 (1993) ArticleMATHGoogle Scholar
  70. Kravtsov, M., Krachkovskii, A.: On some properties of three-index transportation polytopes (1999)
  71. Benterki, D., Zitouni, R., Keraghel, A., Benterki, D.: Elaboration and implantation of an algorithm solving a capacitated four-index transportation. Appl. Math. Sci. 1, 2643–2657 (2007). https://www.researchgate.net/publication/267118025. Accessed 14 Oct 2020 MathSciNetMATHGoogle Scholar
  72. Dhanapal, A., Pandian, P., Anuradha, D.: A new approach for solving solid transportation problems. Appl. Math. Sci. 4, 3603–3610 (2010) MathSciNetMATHGoogle Scholar
  73. Pham, T., Dott, P.: Four indexes transportation problem with interval cost parameter for goods allocation planning. In: 2012 4th IEEE International Symposium on Logistics and Industrial Informatics (2012)
  74. Halder, S., Das, B., Panigrahi, G., Maiti, M.: Solving a solid transportation problem through fuzzy ranking. In: Lecture Notes Electrical Engineering, vol. 470, pp. 283–292 (2017). https://doi.org/10.1007/978-981-10-8585-7_27
  75. Bandopadhyaya, L., Puri, M.C.: Impaired flow multi-index transportation problem with axial constraints. J. Aust. Math. Soc. Ser. B 29, 296–309 (2018). https://doi.org/10.1017/S0334270000005828ArticleMathSciNetMATHGoogle Scholar
  76. Halder Jana, S., Giri, D., Das, B., Panigrahi, G., Jana, B., Maiti, M.: A solid transportation problem with additional constraints using Gaussian type-2 fuzzy environments. In: Springer Proceedings in Mathematics and Statistics, vol. 253, pp. 113–125. Springer, New York (2018)
  77. Das, A., Bera, U.K., Maiti, M.: A solid transportation problem in an uncertain environment involving a type-2 fuzzy variable. Neural Comput. Appl. 31(9), 4903–4927 (2019). https://doi.org/10.1007/s00521-018-03988-8ArticleGoogle Scholar
  78. Hirsch, W.M., Dantzig, G.B.: The fixed charge problem. Nav. Res. Logist. Q. 15(3), 413–424 (1968). https://doi.org/10.1002/nav.3800150306ArticleMathSciNetMATHGoogle Scholar
  79. Balinski, M.L.: Fixed-cost transportation problems. Nav. Res. Logist. Q. 8(1), 41–54 (1961). https://doi.org/10.1002/nav.3800080104ArticleMATHGoogle Scholar
  80. Kowalski, K., Lev, B.: On step fixed-charge transportation problem. Omega 36, 913–917 (2008) ArticleGoogle Scholar
  81. Kuhn, H.W., Baumol, W.J.: An approximative algorithm for the fixed-charges transportation problem. Nav. Res. Logist. Q. 9(1), 1–15 (1962). https://doi.org/10.1002/nav.3800090102ArticleMATHGoogle Scholar
  82. Robers, P., Cooper, L.: A study of the fixed charge transportation problem. Comput. Math. Appl. 2, 125–135 (1976) ArticleMATHGoogle Scholar
  83. Diaby, M.: Successive linear approximation procedure for generalized fixed-charge transportation problems. J. Oper. Res. Soc. 42(11), 991–1001 (1991). https://doi.org/10.1057/jors.1991.189ArticleMathSciNetMATHGoogle Scholar
  84. Kennington, J., Unger, E.: New branch-and-bound algorithm for the fixed-charge transportation problem. Manag. Sci. 22(10), 1116–1126 (1976). https://doi.org/10.1287/mnsc.22.10.1116ArticleMathSciNetMATHGoogle Scholar
  85. Gray, P.: Technical note-exact solution of the fixed-charge transportation problem. Oper. Res. 19(6), 1529 (1971). https://doi.org/10.1287/opre.19.6.1529ArticleMATHGoogle Scholar
  86. Sandrock, K.: A simple algorithm for solving small, fixed-charge transportation problems. J. Oper. Res. Soc. 39(5), 467–475 (1988) ArticleMATHGoogle Scholar
  87. Palekar, U.S., Karwan, M.H., Zionts, S.: A branch-and-bound method for the fixed charge transportation problem. Manag. Sci. 36(9), 1092–1105 (1990). https://doi.org/10.1287/mnsc.36.9.1092ArticleMathSciNetMATHGoogle Scholar
  88. Diaby, M.: Successive linear approximation procedure for generalized fixed-charge transportation problems. J. Oper. Res. Soc. 42, 991–1001 (1991) ArticleMATHGoogle Scholar
  89. Hultberg, T., Cardoso, D.: The teacher assignment problem: a special case of the fixed charge transportation problem. Eur. J. Oper. Res. 101, 463–473 (1997) ArticleMATHGoogle Scholar
  90. Adlakha, V., Kowalski, K.: On the fixed-charge transportation problem. Omega 27(3), 381–388 (1999). https://doi.org/10.1016/S0305-0483(98)00064-4ArticleGoogle Scholar
  91. Raj, K.A.A.D., Rajendran, C.: A hybrid genetic algorithm for solving single-stage fixed-charge transportation problems. Technol. Oper. Manag. 2(1), 1–15 (2011). https://doi.org/10.1007/s13727-012-0001-2ArticleGoogle Scholar
  92. Altassan, K.M., Moustafa El-Sherbiny, M., Sasidhar, B., El-Sherbiny, M.M.: Near-Optimal Solution For The Step Fixed Charge Transportation Problem. Appl. Math. Inf. Sci. 7(2), 661–669 (2013). https://doi.org/10.12785/amis/072L41ArticleMathSciNetGoogle Scholar
  93. Molla-Alizadeh-Zavardehi, S., et al.: Step fixed charge transportation problems via the genetic algorithm. Indian J. Sci. Technol. 7, 949 (2014) ArticleGoogle Scholar
  94. Sagratella, S., Schmidt, M., Sudermann-Merx, N.: The noncooperative fixed charge transportation problem. Eur. J. Oper. Res. 284(1), 373–382 (2020). https://doi.org/10.1016/j.ejor.2019.12.024ArticleMathSciNetMATHGoogle Scholar
  95. Roy, S.K., Midya, S., Weber, G.W.: Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. Appl. 31(12), 8593–8613 (2019). https://doi.org/10.1007/s00521-019-04431-2ArticleGoogle Scholar
  96. Biswas, A., Shaikh, A.A., Niaki, S.T.A.: Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments. Appl. Soft Comput. J. 80, 628–649 (2019). https://doi.org/10.1016/j.asoc.2019.04.011ArticleGoogle Scholar
  97. Midya, S., Roy, S.K.: Multi-objective fixed-charge transportation problem using rough programming. Int. J. Oper. Res. 37(3), 377–395 (2020). https://doi.org/10.1504/IJOR.2020.105444ArticleMathSciNetGoogle Scholar
  98. Singh, G., Singh, A.: Solving multi-objective fixed charged transportation problem using a modified particle swarm optimization algorithm. In: Lecture Notes on Data Engineering and Communications Technologies, vol. 53, pp. 373–386. Springer (2021)
  99. Mahapatra, D.R.: Multi-choice stochastic transportation problem involving Weibull distribution. Int. Optim. Control Theor. Appl. 4(1), 45–55 (2013). https://doi.org/10.11121/ijocta.01.2014.00154ArticleMathSciNetMATHGoogle Scholar
  100. Maity, G., Roy, S.K.: Solving multi-choice multi-objective transportation problem: a utility function approach. J. Uncertain. Anal. Appl. (2014). https://doi.org/10.1186/2195-5468-2-11ArticleGoogle Scholar
  101. Quddoos, A., ull Hasan, M.G., Khalid, M.M.: Multi-choice stochastic transportation problem involving a general form of distributions. J. Korean Phys. Soc. 3(1), 1–9 (2014). https://doi.org/10.1186/2193-1801-3-565ArticleGoogle Scholar
  102. Roy, S.K.: Transportation problem with multi-choice cost and demand and stochastic supply. J. Oper. Res. Soc. China 4(2), 193–204 (2016). https://doi.org/10.1007/s40305-016-0125-3ArticleMathSciNetMATHGoogle Scholar
  103. Ranarahu, N., Dash, J.K., Acharya, S.: Computation of Multi-choice Multi-objective Fuzzy Probabilistic Transportation Problem, pp. 81–95. Springer, Singapore (2019) Google Scholar
  104. Agrawal, P., Ganesh, T.: Multi-choice stochastic transportation problem involving logistic distribution. Adv. Appl. Math. Sci. 18, 45–58 (2018) Google Scholar
  105. Al Qahtani, H., El-Hefnawy, A., El-Ashram, M.M., Fayomi, A.: A goal programming approach to multichoice multiobjective stochastic transportation problems with extreme value distribution. Adv. Oper. Res. (2019). https://doi.org/10.1155/2019/9714137ArticleMathSciNetGoogle Scholar
  106. Nayak, J., et al.: Generalized binary variable approach to solving Multi-Choice transportation problem-Indian Journals. https://www.indianjournals.com/ijor.aspx?target=ijor:ijesm&volume=6&issue=5&article=012. Accessed 27 Jan 2021
  107. Agrawal, P., Ganesh, T.: Solution of stochastic transportation problem involving multi-choice random parameter using Newton’s divided difference interpolation. J. Inf. Optim. Sci. (2020). https://doi.org/10.1080/02522667.2019.1694741ArticleGoogle Scholar
  108. Chanas, S., Delgado, M., Verdegay, J.L., Vila, M.A.: Interval and fuzzy extensions of classical transportation problems. Transp. Plan. Technol. 17(2), 203–218 (1993). https://doi.org/10.1080/03081069308717511ArticleGoogle Scholar
  109. Baidya, A., Bera, U.K., Maiti, M.: Multi-item interval-valued solid transportation problem with safety measure under fuzzy-stochastic environment. J. Transp. Secur. 6(2), 151–174 (2013). https://doi.org/10.1007/s12198-013-0109-zArticleGoogle Scholar
  110. Rani, D., Gulati, T.R.: Fuzzy optimal solution of interval-valued fuzzy transportation problems. Adv. Intell. Syst. Comput. 258, 881–888 (2014). https://doi.org/10.1007/978-81-322-1771-8_76ArticleGoogle Scholar
  111. Yu, V.F., Hu, K.J., Chang, A.Y.: An interactive approach for the multi-objective transportation problem with interval parameters. Int. J. Prod. Res. 53(4), 1051–1064 (2015). https://doi.org/10.1080/00207543.2014.939236ArticleGoogle Scholar
  112. Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Sadhana Acad. Proc. Eng. Sci. 41(3), 299–316 (2016). https://doi.org/10.1007/s12046-016-0464-0ArticleMathSciNetMATHGoogle Scholar
  113. Henriques, C.O., Coelho, D.: Multiobjective Interval Transportation Problems: A Short Review, pp. 99–116. Springer, Cham (2017) Google Scholar
  114. Akilbasha, A., Pandian, P., Natarajan, G.: An innovative exact method for solving fully interval integer transportation problems. Inform. Med. Unlocked 11, 95–99 (2018). https://doi.org/10.1016/j.imu.2018.04.007ArticleGoogle Scholar
  115. Ramesh, G., Sudha, G., Ganesan, K.: A novel approach for the solution of multi-objective interval transportation problem. In: Journal of Physics: Conference Series, vol. 1000, no. 1 (2018). https://doi.org/10.1088/1742-6596/1000/1/012010
  116. Malik, M., Gupta, S.K.: Goal programming technique for solving fully interval-valued intuitionistic fuzzy multiple objective transportation problems. Soft Comput. 24(18), 13955–13977 (2020). https://doi.org/10.1007/s00500-020-04770-6ArticleGoogle Scholar
  117. Bharati, S.K.: Transportation problem with interval-valued intuitionistic fuzzy sets: impact of a new ranking. Prog. Artif. Intell. (2021). https://doi.org/10.1007/s13748-020-00228-wArticleGoogle Scholar
  118. Chanas, S., Kołodziejczyk, W., Machaj, A.: A fuzzy approach to the transportation problem. Fuzzy Sects Syst. 13, 211–221 (1984) ArticleMathSciNetMATHGoogle Scholar
  119. Chanas, S., Kuchta, D.: A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82(3), 299–305 (1996). https://doi.org/10.1016/0165-0114(95)00278-2ArticleMathSciNetGoogle Scholar
  120. Tada, M., Ishii, H.: An integer fuzzy transportation problem. Comput. Math. Appl. 31, 71–87 (1996) ArticleMathSciNetMATHGoogle Scholar
  121. Liu, S., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153, 661–674 (2004) ArticleMathSciNetMATHGoogle Scholar
  122. Gani, A.N., Razak, K.A.: Two-stage fuzzy transportation problem (2006). Accessed 14 Oct 2020
  123. Gupta, P., Mehlawat, M.: An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit. TOP 15, 114–137 (2007). https://link.springer.com/content/pdf/10.1007/s11750-007-0006-3.pdf. Accessed 14 Oct 2020 ArticleMathSciNetMATHGoogle Scholar
  124. Li, L., Huang, Z., Da, Q., Hu, J.: A new method based on goal programming for solving transportation problem with fuzzy cost. In: Proceedings—International Symposium on Information Processing, ISIP 2008 and International Pacific Workshop on Web Mining and Web-Based Application, WMWA 2008, pp. 3–8 (2008). https://doi.org/10.1109/ISIP.2008.9
  125. Lin, F.: Solving the transportation problem with fuzzy coefficients using genetic algorithms. In: 2009 IEEE International Conference on Fuzzy Systems (2009)
  126. Pandian, P., Natarajan, G.: A new algorithm for finding an optimal fuzzy solution for fuzzy transportation problems. Appl. Math. Sci. 4, 79–90 (2010) MATHGoogle Scholar
  127. Güzel, N.: Fuzzy transportation problem with the fuzzy amounts and the fuzzy costs. World Appl. Sci. J. 8(5), 543–549 (2010) Google Scholar
  128. Kumar, A., Kaur, A.: Application of classical transportation methods to find the fuzzy optimal solution of fuzzy transportation problems. Fuzzy Inf. Eng 1(1), 81–99 (2011). https://doi.org/10.1007/s12543-011-0068-7ArticleMathSciNetMATHGoogle Scholar
  129. Gani, A.N., Samuel, A.E., Anuradha, D.: Simplex type algorithm for solving fuzzy transportation problem. Tamsui Oxf. J. Inf. Math. Sci. 27(1), 89–98 (2011). https://doi.org/10.13140/2.1.1865.7929ArticleGoogle Scholar
  130. Kumar, B., Murugesan, S.: On fuzzy transportation problem using triangular fuzzy numbers with the modified, revised simplex method. Int. J. Eng. Sci. Technol. 4(2012), 285–294 (2012) Google Scholar
  131. Ebrahimnejad, A.: A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Appl. Soft. Comput. 19, 171–176 (2014) ArticleGoogle Scholar
  132. Das, U.K., Ashraful-Babu, R., Khan, A., Helal, U.: Logical development of Vogel’s approximation method (LD-VAM): an approach to find basic feasible solution of transportation problem. Int. J. Sci. Technol. Res. 3(2), 42–48 (2014) Google Scholar
  133. Elmaghraby, S.E.: Allocation under uncertainty when the demand has continuous D.F. Manag. Sci. 6(3), 270–294 (1960). https://doi.org/10.1287/mnsc.6.3.270ArticleMathSciNetMATHGoogle Scholar
  134. Williams, A.C.: A stochastic transportation problem. Oper. Res. 11(5), 759–770 (1963). https://doi.org/10.1287/opre.11.5.759ArticleMathSciNetMATHGoogle Scholar
  135. Szwarc, W.: The transportation problem with stochastic demand. Manag. Sci. 11(1), 33–50 (1964). https://doi.org/10.1287/mnsc.11.1.33ArticleMathSciNetGoogle Scholar
  136. Wilson, D.: An a priori bounded model for transportation problems with stochastic demand and integer solutions. AIIE Trans. 4(3), 186–193 (1972). https://doi.org/10.1080/05695557208974848ArticleGoogle Scholar
  137. Cooper, L., Leblanc, L.J.: Stochastic transportation problems and other network-related convex problems. Nav. Res. Logist. Q. 24(2), 327–337 (1977). https://doi.org/10.1002/nav.3800240211ArticleMathSciNetMATHGoogle Scholar
  138. LeBlanc, L.J.: A heuristic approach for large scale discrete stochastic transportation-location problems. Comput. Math. Appl. 3, 87–94 (1977) ArticleGoogle Scholar
  139. Holmberg, K., Joernsten, K.: Cross decomposition applied to the stochastic transportation problem. Eur. J. Oper. Res. 17(1984), 361–368 (1984) ArticleMathSciNetMATHGoogle Scholar
  140. Qi, L.: Forest iteration method for stochastic transportation problem. Math. Program. Study 25, 142–163 (1985). https://doi.org/10.1007/bfb0121081ArticleMathSciNetMATHGoogle Scholar
  141. Freling, R., Romeijn, H.E., Morales, D.R., Wagelmans, A.P.M.: A branch-and-price algorithm for the multiperiod single-sourcing problem. Oper. Res. 51(6), 922–939 (2003). https://doi.org/10.1287/opre.51.6.922.24914ArticleMathSciNetMATHGoogle Scholar
  142. Larsson, T., Patriksson, M., Rydergren, C., Daneva, M.: A comparison of feasible direction methods for the stochastic transportation problem. Comput. Optim. Appl. 46(3), 451–466 (2008). https://doi.org/10.1007/s10589-008-9199-0ArticleMathSciNetMATHGoogle Scholar
  143. Mahapatra, D.R., Roy, S.K., Biswal, M.P.: Stochastic based on multi-objective transportation problems involving normal randomness. Adv. Model. Optim. 12(2), 205–223 (2010) MathSciNetMATHGoogle Scholar
  144. Ge, Y., Ishii, H.: Stochastic bottleneck transportation problem with flexible supply and demand quantity. Kybernetika 47, 560–571 (2011) MathSciNetMATHGoogle Scholar
  145. Akdemir, H.G., Tiryaki, F., Günay Akdemir, H.: Bilevel stochastic transportation problem with exponentially distributed demand. Bitlis Eren Univ. J. Sci. Technol. (2012). https://doi.org/10.17678/beuscitech.47150ArticleGoogle Scholar
  146. Biswal, M.P., Samal, H.K.: Stochastic transportation problem with cauchy random variables and multi choice parameters (2013). Accessed 15 Oct 2020
  147. Hinojosa, Y., Puerto, J., Saldanha-da-Gama, F.: A two-stage stochastic transportation problem with fixed handling costs and a priori selection of the distribution channels. TOP 22, 1123–1147 (2014). https://link.springer.com/content/pdf/10.1007/s11750-014-0321-4.pdf. Accessed 15 Oct 2020 ArticleMathSciNetMATHGoogle Scholar
  148. Stewart, T.J., Ittmann, H.W.: Two-stage optimization in a transportation problem. J. Oper. Res. Soc. 30(10), 897–904 (1979). https://doi.org/10.1057/jors.1979.210ArticleMATHGoogle Scholar
  149. Fulya, M.G., Lin, A.L., Gen, M., Lin, L., Altiparmak, F.: A genetic algorithm for two-stage transportation problem using priority-based encoding. OR Spectr. (2006). https://doi.org/10.1007/s00291-005-0029-9ArticleMathSciNetMATHGoogle Scholar
  150. Tang, L., Gong, H.: A hybrid two-stage transportation and batch scheduling problem. Appl. Math. Model. 32(12), 2467–2479 (2008). https://doi.org/10.1016/j.apm.2007.09.028ArticleMathSciNetMATHGoogle Scholar
  151. Sudhakar, V.J., Kumar, V.N.: Solving the multiobjective two-stage fuzzy transportation problem by zero suffix method (2010). [Online]. Available: www.ccsenet.org/jmr. Accessed 22 Feb 2021
  152. Pandian, P., Natarajan, G.: Solving two-stage transportation problems. In: Communications in Computer and Information Science, 2011, vol. 140, CCIS, pp. 159–165 (2011). https://doi.org/10.1007/978-3-642-19263-0_20
  153. Raj, K.A.A.D., Rajendran, C.: A genetic algorithm for solving the fixed-charge transportation model: two-stage problem. Comput. Oper. Res. 39(9), 2016–2032 (2012). https://doi.org/10.1016/j.cor.2011.09.020ArticleMATHGoogle Scholar
  154. Calvete, H.I., Galé, C., Iranzo, J.A.: An improved evolutionary algorithm for the two-stage transportation problem with the fixed charge at depots. OR Spectr. 38(1), 189–206 (2016). https://doi.org/10.1007/s00291-015-0416-9ArticleMathSciNetMATHGoogle Scholar
  155. Roy, S.K., Maity, G., Weber, G.W.: Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 25(2), 417–439 (2017). https://doi.org/10.1007/s10100-016-0464-5ArticleMathSciNetMATHGoogle Scholar
  156. Malhotra, R.: A polynomial algorithm for a two-stage time minimizing transportation problem. Opsearch 39(5–6), 251–266 (2002). https://doi.org/10.1007/bf03399188ArticleMathSciNetMATHGoogle Scholar
  157. Cosma, O., Pop, P.C., Sabo, C.: A novel hybrid genetic algorithm for the two-stage transportation problem with fixed charges associated to the routes. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Jan 2020, vol. 12011, LNCS, pp. 417–428 (2020). https://doi.org/10.1007/978-3-030-38919-2_34
  158. Khanna, S., Puri, M.C.: A paradox in linear fractional transportation problems with mixed constraints. Optimization 27(4), 375–387 (1993). https://doi.org/10.1080/02331939308843896ArticleMathSciNetMATHGoogle Scholar
  159. Stancu-Minasian, I.M.: Fractional Transportation Problem, pp. 336–364. Springer, Dordrecht (1997) Google Scholar
  160. Joshi, V.D., Gupta, N.: Linear fractional transportation problem with varying demand and supply. Matematiche (Catania) LXVI, 3–12 (2011). https://doi.org/10.4418/2011.66.2.1ArticleMathSciNetMATHGoogle Scholar
  161. Saxena, A., Singh, P., Saxena, P.K.: Quadratic fractional transportation problem with additional impurity restrictions. J. Stat. Manag. Syst. 10(3), 319–338 (2007). https://doi.org/10.1080/09720510.2007.10701257ArticleMATHGoogle Scholar
  162. Khurana, A., Arora, S.R.: The sum of a linear and a linear fractional transportation problem with the restricted and enhanced flow. J. Interdiscip. Math. 9(2), 373–383 (2006). https://doi.org/10.1080/09720502.2006.10700450ArticleMathSciNetMATHGoogle Scholar
  163. Liu, S.: Fractional transportation problem with fuzzy parameters. Soft Comput. (2015). https://doi.org/10.1007/s00500-015-1722-5ArticleGoogle Scholar
  164. Mohanaselvi, S., Ganesan, K.: A new approach for solving linear fuzzy fractional transportation problem. Int. J. Civ. Eng. Technol. 8(8), 1123–1129 (2017) Google Scholar
  165. Anukokila, P., Anju, A., Radhakrishnan, B.: Optimality of intuitionistic fuzzy fractional transportation problem of type-2. Arab J. Basic Appl. Sci. 26(1), 519–530 (2019). https://doi.org/10.1080/25765299.2019.1691895ArticleMATHGoogle Scholar
  166. Anukokila, P., Radhakrishnan, B.: Goal programming approach to the fully fuzzy fractional transportation problem. J. Taibah Univ. Sci. 13(1), 864–874 (2019). https://doi.org/10.1080/16583655.2019.1651520ArticleGoogle Scholar
  167. El Sayed, M.A., Abo-Sinna, M.A.: A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60(1), 1447–1463 (2021). https://doi.org/10.1016/j.aej.2020.10.063ArticleGoogle Scholar
  168. Rubin, P., Narasimhan, R.: Fuzzy goal programming with nested priorities. Fuzzy Sets Syst. 14, 115–129 (1984) ArticleMathSciNetMATHGoogle Scholar
  169. Charnes, A., Cooper, W.W.: Management models and industrial applications of linear programming. Manag. Sci. 4(1), 38–91 (1957). https://doi.org/10.1287/mnsc.4.1.38ArticleMathSciNetMATHGoogle Scholar
  170. Zimmermann, H.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978) ArticleMathSciNetMATHGoogle Scholar
  171. Diaz, J., Ja, D.: Finding a complete description of all efficient solutions to a multiobjective transportation problem (1979). Accessed 22 Nov 2020
  172. Isermann, H.: The enumeration of all efficient solutions for a linear multiple-objective transportation problem. Nav. Res. Logist. Q. 26(1), 123–139 (1979). https://doi.org/10.1002/nav.3800260112ArticleMathSciNetMATHGoogle Scholar
  173. Leberling, H.: On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets Syst. 6, 105–118 (1981) ArticleMathSciNetMATHGoogle Scholar
  174. Majumdar, M., Mitra, T.: Dynamic optimization with a non-convex technology: the case of a linear objective function. Rev. Econ. Stud. 50, 143–151 (1983) ArticleMATHGoogle Scholar
  175. Słowiński, R.: A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets Syst. 19(3), 217–237 (1986). https://doi.org/10.1016/0165-0114(86)90052-7ArticleMathSciNetMATHGoogle Scholar
  176. Ringuest, J., Rinks, D.: Interactive solutions for the linear multiobjective transportation problem. Eur. J. Oper. Res. 32, 96–106 (1987) ArticleMathSciNetMATHGoogle Scholar
  177. Bit, A., Biswal, M., Alam, S.: Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets Syst. 50, 135–141 (1992) ArticleMathSciNetMATHGoogle Scholar
  178. Verma, R., Biswal, M., Biswas, A.: Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions. Fuzzy Sets Syst. 91, 37–43 (1997) ArticleMathSciNetMATHGoogle Scholar
  179. Gen, M., Li, Y., Gen, M., Ida, K.: Solving multi-objective transportation problem by spanning tree-based genetic algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82, 2802–2810 (2000) Google Scholar
  180. Das, S., Goswami, A., Alam, S.: Multiobjective transportation problem with interval cost, source and destination parameters. Eur. J. oper. Res. 117, 100–112 (1999) ArticleMATHGoogle Scholar
  181. Li, L., Lai, K.: A fuzzy approach to the multiobjective transportation problem. Comput. Oper. Res. 27, 43–57 (2000) ArticleMathSciNetMATHGoogle Scholar
  182. Abd El-Wahed, W.: A multi-objective transportation problem under fuzziness Fuzzy Approach. Fuzzy Sets Syst. 117, 27–33 (2001) ArticleMathSciNetMATHGoogle Scholar
  183. Ammar, E., Youness, E.: Study on multiobjective transportation problem with fuzzy numbers. Appl. Math. Comput. 166, 241–253 (2005) MathSciNetMATHGoogle Scholar
  184. Abd El-Wahed, W.F., Lee, S.M.: Interactive fuzzy goal programming for multi-objective transportation problems. Omega 34, 158–166 (2006). https://doi.org/10.1016/j.omega.2004.08.006ArticleGoogle Scholar
  185. Zangiabadi, M., Maleki, H.R.: Fuzzy goal programming for multiobjective transportation problems. J. Appl. Math. Comput. 24(1–2), 449–460 (2007). https://doi.org/10.1007/BF02832333ArticleMathSciNetMATHGoogle Scholar
  186. Lau, H.C.W., Chan, T.M., Tsui, W.T., Chan, F.T.S., Ho, G.T.S., Choy, K.L.: A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Syst. Appl. 36(4), 8255–8268 (2009). https://doi.org/10.1016/j.eswa.2008.10.031ArticleGoogle Scholar
  187. Lohgaonkar, M., Bajaj, V.: Fuzzy approach to solve the multi-objective capacitated transportation problem. Int. J. Bioinform. 2, 10–14 (2010) Google Scholar
  188. Pal, B.B., Kumar, M., Sen, S.: Priority based fuzzy goal programming approach for fractional multilevel programming problems. Int. Rev. Fuzzy Math. 6(2), 1–14 (2011) Google Scholar
  189. Zaki, S., Allah, A.A., Geneedi, H., Elmekawy, A.; Efficient multiobjective genetic algorithm for solving transportation, assignment, and transshipment problems (2012). Accessed 22 Nov 2020
  190. Maity, G., Roy, S.K.: Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 11(1), 62–70 (2016). https://doi.org/10.1080/17509653.2014.988768ArticleGoogle Scholar
  191. Roy, S.K., Maity, G., Weber, G.-W.: Multi-objective two-stage grey transportation problem using utility function with goals. Artic. Cent. Eur. J. Oper. Res. (2017). https://doi.org/10.1007/s10100-016-0464-5ArticleMATHGoogle Scholar
  192. Biswas, A., Shaikh, A., Niaki, S.: Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments. Appl. Soft. Comput. 80, 628–649 (2019) ArticleGoogle Scholar
  193. Bera, R.K., Mondal, S.K.: Analyzing a two-staged multi-objective transportation problem under quantity dependent credit period policy using q-fuzzy number. Int. J. Appl. Comput. Math. (2020). https://doi.org/10.1007/s40819-020-00901-7ArticleMathSciNetMATHGoogle Scholar

Acknowledgements

First author (Yadvendra Kacher) acknowledges the financial support as Junior research fellowship (JRF) received from CSIR (Govt. of India) through HRDG(CSIR) senction Letter No./File No.: 09/1032(0019)/2019-EMR-I.

Author information

Authors and Affiliations

  1. Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India Yadvendra Kacher & Pitam Singh
  1. Yadvendra Kacher
You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar

Contributions

Both the authors contributed equally in developing the whole article.

Corresponding author

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Cite this article

Kacher, Y., Singh, P. A Comprehensive Literature Review on Transportation Problems. Int. J. Appl. Comput. Math 7, 206 (2021). https://doi.org/10.1007/s40819-021-01134-y

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords