A Comprehensive Literature Review on Transportation Problems

A systematic and organized overview of various existing transportation problems and their extensions developed by different researchers is offered in the review article. The article has gone through different research papers and books available in Google scholar, Sciencedirect, Z-library Asia, Springer.com, Research-gate, shodhganga, and many other E-learning platforms. The main purpose of the review paper is to recapitulate the existing form of various types of transportation problems and their systematic developments for the guidance of future researchers to help them classify the varieties of problems to be solved and select the criteria to be optimized.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others

Preface: operations research for transportation
Article 12 December 2018

On Optimization Problems in Urban Transport
Chapter © 2018

Computational Intelligence and Optimization for Transportation Big Data: Challenges and Opportunities
Chapter © 2015
Data Availability
No data is used to prepare this article.
References
- Monge, G.: The founding fathers of optimal transport. Springer, Cham (1781) Google Scholar
- Tolstoĭ, A.: On the history of the transportation and maximum flow problems. Math. Program. 91, 437–445 (1930) MathSciNetGoogle Scholar
- Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). https://doi.org/10.1287/mnsc.6.4.366ArticleMathSciNetMATHGoogle Scholar
- Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20(1–4), 224–230 (1941). https://doi.org/10.1002/sapm1941201224ArticleMathSciNetMATHGoogle Scholar
- Koopmans, T.: A model of transportation. Act. Anal. Prod. Alloc. (1951). http://web.eecs.umich.edu/~pettie/matching/Koopmans-Reiter-mincost-flow-model-Cowlescommision-report.pdf. Accessed 12 Oct 2020
- Charnes, A., Cooper, W.W.: The stepping stone method of explaining linear programming calculations in transportation problems. Manag. Sci. 1(1), 49–69 (1954). https://doi.org/10.1287/mnsc.1.1.49ArticleMathSciNetMATHGoogle Scholar
- Dantzig, G.: Application of the simplex method to a transportation problem. Act. Anal. Prod. Alloc. (1951). https://ci.nii.ac.jp/naid/10021311930/. Accessed 12 Oct 2020
- Hitchcock, F.: The distribution of a product from several sources to numerous localities. Int. J. Pharm. Technol. 8(1), 3554–3570 (2016) Google Scholar
- Sungeeta, S., Renu, T., Deepali, S.: A review on fuzzy and stochastic extensions of the Multi Index transportation problem. Yugoslav. J. Oper. Res. 27(1), 3–29 (2017) ArticleMathSciNetMATHGoogle Scholar
- Gupta, R., Komal.: Literature Survey on Single and Multi-Objective Transportation Problems. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur - India (2019)
- Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Manag. Sci. 14(3), 205–220 (1967). https://doi.org/10.1287/mnsc.14.3.205ArticleMATHGoogle Scholar
- Lee, S.M., Moore, L.J.: Optimizing transportation problems with multiple objectives. AIIE Trans. 5(4), 333–338 (1973). https://doi.org/10.1080/05695557308974920ArticleGoogle Scholar
- Kwak, N., Schniederjans, M.J.: A goal programming model for improved transportation problem solutions. Omega 7, 367–370 (1979).https://www.sciencedirect.com/science/article/pii/0305048379900458. Accessed 12 Oct 2020 ArticleGoogle Scholar
- Ahuja, R.K.: Algorithms for the minimax transportation problem. Nav. Res. Logist. Q. 33(4), 725–739 (1986). https://doi.org/10.1002/nav.3800330415ArticleMathSciNetMATHGoogle Scholar
- Currin, D.C.: Transportation problems with inadmissible routes. J. Oper. Res. Soc. 37(4), 387–396 (1986). https://doi.org/10.1057/jors.1986.66ArticleMATHGoogle Scholar
- Shafaat, A., Goyal, S.K.: Resolution of degeneracy in transportation problems. J. Oper. Res. Soc. 39(4), 411–413 (1988). https://doi.org/10.1057/jors.1988.69ArticleMATHGoogle Scholar
- Arsham, H., Kahn, A.B.: A simplex-type algorithm for general transportation problems: an alternative to stepping-stone. J. Oper. Res. Soc. 40(6), 581–590 (1989). https://doi.org/10.1057/jors.1989.95ArticleMATHGoogle Scholar
- Kirca, Ö., Şatir, A.: A heuristic for obtaining an initial solution for the transportation problem. J. Oper. Res. Soc. 41(9), 865–871 (1990). https://doi.org/10.1057/jors.1990.124ArticleMATHGoogle Scholar
- Goczyłla, K., Cielatkowski, J.: Optimal routing in a transportation network. Eur. J. Oper. Res. 87, 214–222 (1995) ArticleMATHGoogle Scholar
- Adlakha, V., Kowalski, K.: An alternative solution algorithm for certain transportation problems. Int. J. Math. Educ. Sci. Technol. 30(5), 719–728 (2010). https://doi.org/10.1080/002073999287716ArticleMathSciNetMATHGoogle Scholar
- Minghe, S.: The transportation problem with exclusionary side constraints and two branch-and-bound algorithms. Eur. J. Oper. Res. 140, 629–647 (2002) ArticleMathSciNetMATHGoogle Scholar
- Sharma, R., Gaur, A., Okunbor, D.: Management decision-making for transportation problems through goal programming. J. Acad. Bus. Econ. 4, 195 (2004) Google Scholar
- Imam, T., Elsharawy, G., Gomah, M., Samy, I.: Solving transportation problem using object-oriented model. IJCSNS 9, 353 (2009) Google Scholar
- Adlakha, V.: Alternate solutions analysis for transportation problems (2009). https://clutejournals.com/index.php/JBER/article/view/2354. Accessed 12 Oct 2020
- Pandian, P., Natarajan, G.: A new method for finding an optimal solution for transportation problems. Int. J. Math. Sci. Eng. Appl. 4, 59–65 (2010) MathSciNetMATHGoogle Scholar
- Korukoğlu, S., Ballı, S.: An improved Vogel’s approximation method for the transportation problem. Math. Comput. Appl. 16, 370–381 (2011) Google Scholar
- Sharma, G., Abbas, S., Gupta, V.: Solving transportation problem with the various method of a linear programming problem. Asian J. Curr. Eng. Maths 1, 81–83 (2012) Google Scholar
- Sharma, G., Abbas, S., Gupta, V.K.: Solving transportation problem with the help of integer programming problem. IOSR J. Eng. 2, 1274–1277 (2012) ArticleGoogle Scholar
- Joshi, R.V.: Optimization techniques for transportation problems of three variables. IOSR J. Math. 9, 46–50 (2013) ArticleGoogle Scholar
- Rekha, S., Srividhya, B., Vidya, S.: Transportation cost minimization: max–min penalty approach. IOSR J. Math. 10, 6–8 (2014) ArticleGoogle Scholar
- Azad, S., Hossain, M., Rahman, M.: An algorithmic approach to solve transportation problems with the average total opportunity cost method. Int. J. Sci. Res. Publ. 7, 262–270 (2017) Google Scholar
- Singh, S.: Note on transportation problem with a new method for the resolution of degeneracy. Univers. J. Ind. Bus. Manag. 3, 26–36 (2015) ArticleGoogle Scholar
- Palanievel, M., Suganya, M.: A new method to solve transportation problem-Harmonic Mean approach. Eng. Technol. Open Access J. 2, 1–3 (2018) Google Scholar
- Charnes, A., Klingman, D.: The more-for-less paradox in the distribution model. Cahiers du Centre d’Etudes de Recherche Operationelle 13, 11–22 (1971) MathSciNetMATHGoogle Scholar
- Klingman, D., Russell, R.: The transportation problem with mixed constraints. J. Oper. Res. Soc. 25(3), 447–455 (1974). https://doi.org/10.1057/jors.1974.78ArticleMathSciNetMATHGoogle Scholar
- Robb, D.J.: The ‘more for less’ paradox in distribution models: an intuitive explanation. IIE Trans. 22(4), 377–378 (2007). https://doi.org/10.1080/07408179008964192ArticleMathSciNetGoogle Scholar
- Arora, S., Ahuja, A.: A paradox in a fixed charge transportation problem. Indian J. Pure Appl. Math. 31, 809–822 (2000) MathSciNetMATHGoogle Scholar
- Adlakha, V., Kowalski, K.: A heuristic method for ‘more-for-less’ in distribution-related problems. Int. J. Math. Educ. Sci. Technol. 32(1), 61–71 (2001). https://doi.org/10.1080/00207390117225ArticleGoogle Scholar
- Adlakha, V., Kowalski, K., Lev, B.: Solving transportation problems with mixed constraints. Int. J. Manag. Sci. Eng. Manag. 1(1), 47–52 (2006). https://doi.org/10.1080/17509653.2006.10670996ArticleGoogle Scholar
- Storøy, S.: The transportation paradox revisited (2007). http://web.ist.utl.pt/mcasquilho/compute/_linpro/2007Storoy.pdf. Accessed 13 Oct 2020
- Pandian, P., Natarajan, G.: Fourier methods for solving transportation problems with mixed constraints. Int. J. Contemp. Math. Sci. 5, 1385–1395 (2010) MathSciNetMATHGoogle Scholar
- Joshi, V., Gupta, N.: Linear fractional transportation problem with varying demand and supply Vishwas Deep Joshi–Nilama Gupta. Matematiche (Catania) (2011). https://doi.org/10.4418/2011.66.2.1ArticleGoogle Scholar
- Joshi, V.D., Gupta, N.: Identifying more-for-less paradox in the linear fractional transportation problem using objective matrix (2012). https://matematika.utm.my/index.php/matematika/article/view/572. Accessed 13 Oct 2020
- Pandian, P., Anuradha, D.: Path method for finding a more-for-less optimal solution to transportation problems. In: International Conference on Mathematical Computer Engineering (2013)
- George, A.O., Jude, O., Anderson, C.N.: Paradox algorithm in application of a linear transportation problem. Am. J. Appl. Math. Stat. 2, 10–15 (2014) ArticleGoogle Scholar
- Gupta, S., Ali, I., Ahmed, A.: Multi-choice multi-objective capacitated transportation problem: a case study of uncertain demand and supply. J. Stat. Manag. Syst. 21(3), 467–491 (2018). https://doi.org/10.1080/09720510.2018.1437943ArticleGoogle Scholar
- Agarwal, S., Sharma, S.: A shootout method for time minimizing transportation problem with mixed constraints. Am. J. Math. Manag. Sci. 39(4), 299–314 (2020). https://doi.org/10.1080/01966324.2020.1730274ArticleGoogle Scholar
- Hammer, P.L.: Time-minimizing transportation problems. Nav. Res. Logist. Q. 16(3), 345–357 (1969). https://doi.org/10.1002/nav.3800160307ArticleMathSciNetMATHGoogle Scholar
- Garfinkel, R.S., Rao, M.R.: The bottleneck transportation problem. Nav. Res. Logist. Q. 18(4), 465–472 (1971). https://doi.org/10.1002/nav.3800180404ArticleMathSciNetMATHGoogle Scholar
- Szwarc, W.: Some remarks on the time transportation problem. Nav. Res. Logist. Q. 18(4), 473–485 (1971). https://doi.org/10.1002/nav.3800180405ArticleMathSciNetMATHGoogle Scholar
- Sharma, J., Swarup, K.: Time minimizing transportation problems. In: Proceedings of the Indian Academy of Sciences (1977)
- Varadarajan, R.: An optimal algorithm for 2× n bottleneck transportation problem. Oper. Res. Lett. 10, 525–529 (1991) ArticleMathSciNetMATHGoogle Scholar
- Geetha, S., Nair, K.P.: A stochastic bottleneck transportation problem. J. Oper. Res. Soc. 45(5), 583–588 (1994). https://doi.org/10.1057/jors.1994.86ArticleMATHGoogle Scholar
- Nikolić, I.: Total time minimizing transportation problem. Yugosl. J. Oper. Res. 17, 125–133 (2007). https://doi.org/10.2298/YUJOR0701125NArticleMathSciNetMATHGoogle Scholar
- Pandian, P., Natarajan, G.: A new method for solving bottleneck-cost transportation problems. In: International Mathematical Forum (2011)
- Jain, M., Saksena, P.K.: Time minimizing transportation problem with fractional bottleneck objective function. Yugosl. J. Oper. Res. 22, 115–129 (2012). https://doi.org/10.2298/YJOR100818004JArticleMathSciNetMATHGoogle Scholar
- Kolman, P.: Time minimizing transportation problems with partial limitations of transported amount for transport participants. In: AIP Conference Proceedings, vol. 1648 (2015). https://doi.org/10.1063/1.4912945
- Waldherr, S., Poppenborg, J., Knust, S.: The bottleneck transportation problem with auxiliary resources. 4OR 13(3), 279–292 (2015). https://doi.org/10.1007/s10288-015-0284-9ArticleMathSciNetMATHGoogle Scholar
- Dhanapal, A., Sobana, V.E., Anuradha, D.: On solving bottleneck bi-criteria fuzzy transportation problems. Int. J. Eng. Technol. 7, 547–551 (2018) ArticleGoogle Scholar
- Vidhya, V., Ganesan, K.: A simple method for the solution of bottleneck-cost transportation problem under fuzzy environment. In: AIP Conference Proceedings, vol. 2277, no. 1, p. 090008 (2020). https://doi.org/10.1063/5.0026105
- Agarwal, S., Sharma, S.: A shootout method for time minimizing transportation problem with mixed constraints. Am. J. Math. Manag. Sci. (2020). https://doi.org/10.1080/01966324.2020.1730274ArticleGoogle Scholar
- Haley, K.B.: New methods in mathematical programming: the solid transportation problem. Oper. Res. 10(4), 448–463 (1962). https://doi.org/10.1287/opre.10.4.448ArticleMATHGoogle Scholar
- Shell, E.: Distribution of product by several properties. In: Proceedings of the Second Symposium in Linear Programming (1955)
- Sharma, J.: Extensions and special cases of transportation problem: a survey (1978). Accessed 03 Dec 2020
- Haley, K.B.: The existence of a solution to the multi-index problem. J. Oper. Res. Soc. 16(4), 471–474 (1965). https://doi.org/10.1057/jors.1965.81ArticleGoogle Scholar
- Morávek, J., Vlach, M.: Letter to the Editor—On the necessary conditions for the existence of the solution of the multi-index transportation problem. Oper. Res. 15(3), 542–545 (1967). https://doi.org/10.1287/opre.15.3.542ArticleMATHGoogle Scholar
- Smith, G.: A procedure for determining necessary and sufficient conditions for the existence of a solution to the multi-index problem. Aplikace matematiky 19(3), 177–183 (1974) MathSciNetMATHGoogle Scholar
- Vlach, M.: Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discrete Appl. Math. 13, 61–78 (1986) ArticleMathSciNetMATHGoogle Scholar
- Junginger, W.: On representatives of multi-index transportation problems. Eur. J. Oper. Res. 66, 353–371 (1993) ArticleMATHGoogle Scholar
- Kravtsov, M., Krachkovskii, A.: On some properties of three-index transportation polytopes (1999)
- Benterki, D., Zitouni, R., Keraghel, A., Benterki, D.: Elaboration and implantation of an algorithm solving a capacitated four-index transportation. Appl. Math. Sci. 1, 2643–2657 (2007). https://www.researchgate.net/publication/267118025. Accessed 14 Oct 2020 MathSciNetMATHGoogle Scholar
- Dhanapal, A., Pandian, P., Anuradha, D.: A new approach for solving solid transportation problems. Appl. Math. Sci. 4, 3603–3610 (2010) MathSciNetMATHGoogle Scholar
- Pham, T., Dott, P.: Four indexes transportation problem with interval cost parameter for goods allocation planning. In: 2012 4th IEEE International Symposium on Logistics and Industrial Informatics (2012)
- Halder, S., Das, B., Panigrahi, G., Maiti, M.: Solving a solid transportation problem through fuzzy ranking. In: Lecture Notes Electrical Engineering, vol. 470, pp. 283–292 (2017). https://doi.org/10.1007/978-981-10-8585-7_27
- Bandopadhyaya, L., Puri, M.C.: Impaired flow multi-index transportation problem with axial constraints. J. Aust. Math. Soc. Ser. B 29, 296–309 (2018). https://doi.org/10.1017/S0334270000005828ArticleMathSciNetMATHGoogle Scholar
- Halder Jana, S., Giri, D., Das, B., Panigrahi, G., Jana, B., Maiti, M.: A solid transportation problem with additional constraints using Gaussian type-2 fuzzy environments. In: Springer Proceedings in Mathematics and Statistics, vol. 253, pp. 113–125. Springer, New York (2018)
- Das, A., Bera, U.K., Maiti, M.: A solid transportation problem in an uncertain environment involving a type-2 fuzzy variable. Neural Comput. Appl. 31(9), 4903–4927 (2019). https://doi.org/10.1007/s00521-018-03988-8ArticleGoogle Scholar
- Hirsch, W.M., Dantzig, G.B.: The fixed charge problem. Nav. Res. Logist. Q. 15(3), 413–424 (1968). https://doi.org/10.1002/nav.3800150306ArticleMathSciNetMATHGoogle Scholar
- Balinski, M.L.: Fixed-cost transportation problems. Nav. Res. Logist. Q. 8(1), 41–54 (1961). https://doi.org/10.1002/nav.3800080104ArticleMATHGoogle Scholar
- Kowalski, K., Lev, B.: On step fixed-charge transportation problem. Omega 36, 913–917 (2008) ArticleGoogle Scholar
- Kuhn, H.W., Baumol, W.J.: An approximative algorithm for the fixed-charges transportation problem. Nav. Res. Logist. Q. 9(1), 1–15 (1962). https://doi.org/10.1002/nav.3800090102ArticleMATHGoogle Scholar
- Robers, P., Cooper, L.: A study of the fixed charge transportation problem. Comput. Math. Appl. 2, 125–135 (1976) ArticleMATHGoogle Scholar
- Diaby, M.: Successive linear approximation procedure for generalized fixed-charge transportation problems. J. Oper. Res. Soc. 42(11), 991–1001 (1991). https://doi.org/10.1057/jors.1991.189ArticleMathSciNetMATHGoogle Scholar
- Kennington, J., Unger, E.: New branch-and-bound algorithm for the fixed-charge transportation problem. Manag. Sci. 22(10), 1116–1126 (1976). https://doi.org/10.1287/mnsc.22.10.1116ArticleMathSciNetMATHGoogle Scholar
- Gray, P.: Technical note-exact solution of the fixed-charge transportation problem. Oper. Res. 19(6), 1529 (1971). https://doi.org/10.1287/opre.19.6.1529ArticleMATHGoogle Scholar
- Sandrock, K.: A simple algorithm for solving small, fixed-charge transportation problems. J. Oper. Res. Soc. 39(5), 467–475 (1988) ArticleMATHGoogle Scholar
- Palekar, U.S., Karwan, M.H., Zionts, S.: A branch-and-bound method for the fixed charge transportation problem. Manag. Sci. 36(9), 1092–1105 (1990). https://doi.org/10.1287/mnsc.36.9.1092ArticleMathSciNetMATHGoogle Scholar
- Diaby, M.: Successive linear approximation procedure for generalized fixed-charge transportation problems. J. Oper. Res. Soc. 42, 991–1001 (1991) ArticleMATHGoogle Scholar
- Hultberg, T., Cardoso, D.: The teacher assignment problem: a special case of the fixed charge transportation problem. Eur. J. Oper. Res. 101, 463–473 (1997) ArticleMATHGoogle Scholar
- Adlakha, V., Kowalski, K.: On the fixed-charge transportation problem. Omega 27(3), 381–388 (1999). https://doi.org/10.1016/S0305-0483(98)00064-4ArticleGoogle Scholar
- Raj, K.A.A.D., Rajendran, C.: A hybrid genetic algorithm for solving single-stage fixed-charge transportation problems. Technol. Oper. Manag. 2(1), 1–15 (2011). https://doi.org/10.1007/s13727-012-0001-2ArticleGoogle Scholar
- Altassan, K.M., Moustafa El-Sherbiny, M., Sasidhar, B., El-Sherbiny, M.M.: Near-Optimal Solution For The Step Fixed Charge Transportation Problem. Appl. Math. Inf. Sci. 7(2), 661–669 (2013). https://doi.org/10.12785/amis/072L41ArticleMathSciNetGoogle Scholar
- Molla-Alizadeh-Zavardehi, S., et al.: Step fixed charge transportation problems via the genetic algorithm. Indian J. Sci. Technol. 7, 949 (2014) ArticleGoogle Scholar
- Sagratella, S., Schmidt, M., Sudermann-Merx, N.: The noncooperative fixed charge transportation problem. Eur. J. Oper. Res. 284(1), 373–382 (2020). https://doi.org/10.1016/j.ejor.2019.12.024ArticleMathSciNetMATHGoogle Scholar
- Roy, S.K., Midya, S., Weber, G.W.: Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. Appl. 31(12), 8593–8613 (2019). https://doi.org/10.1007/s00521-019-04431-2ArticleGoogle Scholar
- Biswas, A., Shaikh, A.A., Niaki, S.T.A.: Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments. Appl. Soft Comput. J. 80, 628–649 (2019). https://doi.org/10.1016/j.asoc.2019.04.011ArticleGoogle Scholar
- Midya, S., Roy, S.K.: Multi-objective fixed-charge transportation problem using rough programming. Int. J. Oper. Res. 37(3), 377–395 (2020). https://doi.org/10.1504/IJOR.2020.105444ArticleMathSciNetGoogle Scholar
- Singh, G., Singh, A.: Solving multi-objective fixed charged transportation problem using a modified particle swarm optimization algorithm. In: Lecture Notes on Data Engineering and Communications Technologies, vol. 53, pp. 373–386. Springer (2021)
- Mahapatra, D.R.: Multi-choice stochastic transportation problem involving Weibull distribution. Int. Optim. Control Theor. Appl. 4(1), 45–55 (2013). https://doi.org/10.11121/ijocta.01.2014.00154ArticleMathSciNetMATHGoogle Scholar
- Maity, G., Roy, S.K.: Solving multi-choice multi-objective transportation problem: a utility function approach. J. Uncertain. Anal. Appl. (2014). https://doi.org/10.1186/2195-5468-2-11ArticleGoogle Scholar
- Quddoos, A., ull Hasan, M.G., Khalid, M.M.: Multi-choice stochastic transportation problem involving a general form of distributions. J. Korean Phys. Soc. 3(1), 1–9 (2014). https://doi.org/10.1186/2193-1801-3-565ArticleGoogle Scholar
- Roy, S.K.: Transportation problem with multi-choice cost and demand and stochastic supply. J. Oper. Res. Soc. China 4(2), 193–204 (2016). https://doi.org/10.1007/s40305-016-0125-3ArticleMathSciNetMATHGoogle Scholar
- Ranarahu, N., Dash, J.K., Acharya, S.: Computation of Multi-choice Multi-objective Fuzzy Probabilistic Transportation Problem, pp. 81–95. Springer, Singapore (2019) Google Scholar
- Agrawal, P., Ganesh, T.: Multi-choice stochastic transportation problem involving logistic distribution. Adv. Appl. Math. Sci. 18, 45–58 (2018) Google Scholar
- Al Qahtani, H., El-Hefnawy, A., El-Ashram, M.M., Fayomi, A.: A goal programming approach to multichoice multiobjective stochastic transportation problems with extreme value distribution. Adv. Oper. Res. (2019). https://doi.org/10.1155/2019/9714137ArticleMathSciNetGoogle Scholar
- Nayak, J., et al.: Generalized binary variable approach to solving Multi-Choice transportation problem-Indian Journals. https://www.indianjournals.com/ijor.aspx?target=ijor:ijesm&volume=6&issue=5&article=012. Accessed 27 Jan 2021
- Agrawal, P., Ganesh, T.: Solution of stochastic transportation problem involving multi-choice random parameter using Newton’s divided difference interpolation. J. Inf. Optim. Sci. (2020). https://doi.org/10.1080/02522667.2019.1694741ArticleGoogle Scholar
- Chanas, S., Delgado, M., Verdegay, J.L., Vila, M.A.: Interval and fuzzy extensions of classical transportation problems. Transp. Plan. Technol. 17(2), 203–218 (1993). https://doi.org/10.1080/03081069308717511ArticleGoogle Scholar
- Baidya, A., Bera, U.K., Maiti, M.: Multi-item interval-valued solid transportation problem with safety measure under fuzzy-stochastic environment. J. Transp. Secur. 6(2), 151–174 (2013). https://doi.org/10.1007/s12198-013-0109-zArticleGoogle Scholar
- Rani, D., Gulati, T.R.: Fuzzy optimal solution of interval-valued fuzzy transportation problems. Adv. Intell. Syst. Comput. 258, 881–888 (2014). https://doi.org/10.1007/978-81-322-1771-8_76ArticleGoogle Scholar
- Yu, V.F., Hu, K.J., Chang, A.Y.: An interactive approach for the multi-objective transportation problem with interval parameters. Int. J. Prod. Res. 53(4), 1051–1064 (2015). https://doi.org/10.1080/00207543.2014.939236ArticleGoogle Scholar
- Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Sadhana Acad. Proc. Eng. Sci. 41(3), 299–316 (2016). https://doi.org/10.1007/s12046-016-0464-0ArticleMathSciNetMATHGoogle Scholar
- Henriques, C.O., Coelho, D.: Multiobjective Interval Transportation Problems: A Short Review, pp. 99–116. Springer, Cham (2017) Google Scholar
- Akilbasha, A., Pandian, P., Natarajan, G.: An innovative exact method for solving fully interval integer transportation problems. Inform. Med. Unlocked 11, 95–99 (2018). https://doi.org/10.1016/j.imu.2018.04.007ArticleGoogle Scholar
- Ramesh, G., Sudha, G., Ganesan, K.: A novel approach for the solution of multi-objective interval transportation problem. In: Journal of Physics: Conference Series, vol. 1000, no. 1 (2018). https://doi.org/10.1088/1742-6596/1000/1/012010
- Malik, M., Gupta, S.K.: Goal programming technique for solving fully interval-valued intuitionistic fuzzy multiple objective transportation problems. Soft Comput. 24(18), 13955–13977 (2020). https://doi.org/10.1007/s00500-020-04770-6ArticleGoogle Scholar
- Bharati, S.K.: Transportation problem with interval-valued intuitionistic fuzzy sets: impact of a new ranking. Prog. Artif. Intell. (2021). https://doi.org/10.1007/s13748-020-00228-wArticleGoogle Scholar
- Chanas, S., Kołodziejczyk, W., Machaj, A.: A fuzzy approach to the transportation problem. Fuzzy Sects Syst. 13, 211–221 (1984) ArticleMathSciNetMATHGoogle Scholar
- Chanas, S., Kuchta, D.: A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82(3), 299–305 (1996). https://doi.org/10.1016/0165-0114(95)00278-2ArticleMathSciNetGoogle Scholar
- Tada, M., Ishii, H.: An integer fuzzy transportation problem. Comput. Math. Appl. 31, 71–87 (1996) ArticleMathSciNetMATHGoogle Scholar
- Liu, S., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153, 661–674 (2004) ArticleMathSciNetMATHGoogle Scholar
- Gani, A.N., Razak, K.A.: Two-stage fuzzy transportation problem (2006). Accessed 14 Oct 2020
- Gupta, P., Mehlawat, M.: An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit. TOP 15, 114–137 (2007). https://link.springer.com/content/pdf/10.1007/s11750-007-0006-3.pdf. Accessed 14 Oct 2020 ArticleMathSciNetMATHGoogle Scholar
- Li, L., Huang, Z., Da, Q., Hu, J.: A new method based on goal programming for solving transportation problem with fuzzy cost. In: Proceedings—International Symposium on Information Processing, ISIP 2008 and International Pacific Workshop on Web Mining and Web-Based Application, WMWA 2008, pp. 3–8 (2008). https://doi.org/10.1109/ISIP.2008.9
- Lin, F.: Solving the transportation problem with fuzzy coefficients using genetic algorithms. In: 2009 IEEE International Conference on Fuzzy Systems (2009)
- Pandian, P., Natarajan, G.: A new algorithm for finding an optimal fuzzy solution for fuzzy transportation problems. Appl. Math. Sci. 4, 79–90 (2010) MATHGoogle Scholar
- Güzel, N.: Fuzzy transportation problem with the fuzzy amounts and the fuzzy costs. World Appl. Sci. J. 8(5), 543–549 (2010) Google Scholar
- Kumar, A., Kaur, A.: Application of classical transportation methods to find the fuzzy optimal solution of fuzzy transportation problems. Fuzzy Inf. Eng 1(1), 81–99 (2011). https://doi.org/10.1007/s12543-011-0068-7ArticleMathSciNetMATHGoogle Scholar
- Gani, A.N., Samuel, A.E., Anuradha, D.: Simplex type algorithm for solving fuzzy transportation problem. Tamsui Oxf. J. Inf. Math. Sci. 27(1), 89–98 (2011). https://doi.org/10.13140/2.1.1865.7929ArticleGoogle Scholar
- Kumar, B., Murugesan, S.: On fuzzy transportation problem using triangular fuzzy numbers with the modified, revised simplex method. Int. J. Eng. Sci. Technol. 4(2012), 285–294 (2012) Google Scholar
- Ebrahimnejad, A.: A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Appl. Soft. Comput. 19, 171–176 (2014) ArticleGoogle Scholar
- Das, U.K., Ashraful-Babu, R., Khan, A., Helal, U.: Logical development of Vogel’s approximation method (LD-VAM): an approach to find basic feasible solution of transportation problem. Int. J. Sci. Technol. Res. 3(2), 42–48 (2014) Google Scholar
- Elmaghraby, S.E.: Allocation under uncertainty when the demand has continuous D.F. Manag. Sci. 6(3), 270–294 (1960). https://doi.org/10.1287/mnsc.6.3.270ArticleMathSciNetMATHGoogle Scholar
- Williams, A.C.: A stochastic transportation problem. Oper. Res. 11(5), 759–770 (1963). https://doi.org/10.1287/opre.11.5.759ArticleMathSciNetMATHGoogle Scholar
- Szwarc, W.: The transportation problem with stochastic demand. Manag. Sci. 11(1), 33–50 (1964). https://doi.org/10.1287/mnsc.11.1.33ArticleMathSciNetGoogle Scholar
- Wilson, D.: An a priori bounded model for transportation problems with stochastic demand and integer solutions. AIIE Trans. 4(3), 186–193 (1972). https://doi.org/10.1080/05695557208974848ArticleGoogle Scholar
- Cooper, L., Leblanc, L.J.: Stochastic transportation problems and other network-related convex problems. Nav. Res. Logist. Q. 24(2), 327–337 (1977). https://doi.org/10.1002/nav.3800240211ArticleMathSciNetMATHGoogle Scholar
- LeBlanc, L.J.: A heuristic approach for large scale discrete stochastic transportation-location problems. Comput. Math. Appl. 3, 87–94 (1977) ArticleGoogle Scholar
- Holmberg, K., Joernsten, K.: Cross decomposition applied to the stochastic transportation problem. Eur. J. Oper. Res. 17(1984), 361–368 (1984) ArticleMathSciNetMATHGoogle Scholar
- Qi, L.: Forest iteration method for stochastic transportation problem. Math. Program. Study 25, 142–163 (1985). https://doi.org/10.1007/bfb0121081ArticleMathSciNetMATHGoogle Scholar
- Freling, R., Romeijn, H.E., Morales, D.R., Wagelmans, A.P.M.: A branch-and-price algorithm for the multiperiod single-sourcing problem. Oper. Res. 51(6), 922–939 (2003). https://doi.org/10.1287/opre.51.6.922.24914ArticleMathSciNetMATHGoogle Scholar
- Larsson, T., Patriksson, M., Rydergren, C., Daneva, M.: A comparison of feasible direction methods for the stochastic transportation problem. Comput. Optim. Appl. 46(3), 451–466 (2008). https://doi.org/10.1007/s10589-008-9199-0ArticleMathSciNetMATHGoogle Scholar
- Mahapatra, D.R., Roy, S.K., Biswal, M.P.: Stochastic based on multi-objective transportation problems involving normal randomness. Adv. Model. Optim. 12(2), 205–223 (2010) MathSciNetMATHGoogle Scholar
- Ge, Y., Ishii, H.: Stochastic bottleneck transportation problem with flexible supply and demand quantity. Kybernetika 47, 560–571 (2011) MathSciNetMATHGoogle Scholar
- Akdemir, H.G., Tiryaki, F., Günay Akdemir, H.: Bilevel stochastic transportation problem with exponentially distributed demand. Bitlis Eren Univ. J. Sci. Technol. (2012). https://doi.org/10.17678/beuscitech.47150ArticleGoogle Scholar
- Biswal, M.P., Samal, H.K.: Stochastic transportation problem with cauchy random variables and multi choice parameters (2013). Accessed 15 Oct 2020
- Hinojosa, Y., Puerto, J., Saldanha-da-Gama, F.: A two-stage stochastic transportation problem with fixed handling costs and a priori selection of the distribution channels. TOP 22, 1123–1147 (2014). https://link.springer.com/content/pdf/10.1007/s11750-014-0321-4.pdf. Accessed 15 Oct 2020 ArticleMathSciNetMATHGoogle Scholar
- Stewart, T.J., Ittmann, H.W.: Two-stage optimization in a transportation problem. J. Oper. Res. Soc. 30(10), 897–904 (1979). https://doi.org/10.1057/jors.1979.210ArticleMATHGoogle Scholar
- Fulya, M.G., Lin, A.L., Gen, M., Lin, L., Altiparmak, F.: A genetic algorithm for two-stage transportation problem using priority-based encoding. OR Spectr. (2006). https://doi.org/10.1007/s00291-005-0029-9ArticleMathSciNetMATHGoogle Scholar
- Tang, L., Gong, H.: A hybrid two-stage transportation and batch scheduling problem. Appl. Math. Model. 32(12), 2467–2479 (2008). https://doi.org/10.1016/j.apm.2007.09.028ArticleMathSciNetMATHGoogle Scholar
- Sudhakar, V.J., Kumar, V.N.: Solving the multiobjective two-stage fuzzy transportation problem by zero suffix method (2010). [Online]. Available: www.ccsenet.org/jmr. Accessed 22 Feb 2021
- Pandian, P., Natarajan, G.: Solving two-stage transportation problems. In: Communications in Computer and Information Science, 2011, vol. 140, CCIS, pp. 159–165 (2011). https://doi.org/10.1007/978-3-642-19263-0_20
- Raj, K.A.A.D., Rajendran, C.: A genetic algorithm for solving the fixed-charge transportation model: two-stage problem. Comput. Oper. Res. 39(9), 2016–2032 (2012). https://doi.org/10.1016/j.cor.2011.09.020ArticleMATHGoogle Scholar
- Calvete, H.I., Galé, C., Iranzo, J.A.: An improved evolutionary algorithm for the two-stage transportation problem with the fixed charge at depots. OR Spectr. 38(1), 189–206 (2016). https://doi.org/10.1007/s00291-015-0416-9ArticleMathSciNetMATHGoogle Scholar
- Roy, S.K., Maity, G., Weber, G.W.: Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 25(2), 417–439 (2017). https://doi.org/10.1007/s10100-016-0464-5ArticleMathSciNetMATHGoogle Scholar
- Malhotra, R.: A polynomial algorithm for a two-stage time minimizing transportation problem. Opsearch 39(5–6), 251–266 (2002). https://doi.org/10.1007/bf03399188ArticleMathSciNetMATHGoogle Scholar
- Cosma, O., Pop, P.C., Sabo, C.: A novel hybrid genetic algorithm for the two-stage transportation problem with fixed charges associated to the routes. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Jan 2020, vol. 12011, LNCS, pp. 417–428 (2020). https://doi.org/10.1007/978-3-030-38919-2_34
- Khanna, S., Puri, M.C.: A paradox in linear fractional transportation problems with mixed constraints. Optimization 27(4), 375–387 (1993). https://doi.org/10.1080/02331939308843896ArticleMathSciNetMATHGoogle Scholar
- Stancu-Minasian, I.M.: Fractional Transportation Problem, pp. 336–364. Springer, Dordrecht (1997) Google Scholar
- Joshi, V.D., Gupta, N.: Linear fractional transportation problem with varying demand and supply. Matematiche (Catania) LXVI, 3–12 (2011). https://doi.org/10.4418/2011.66.2.1ArticleMathSciNetMATHGoogle Scholar
- Saxena, A., Singh, P., Saxena, P.K.: Quadratic fractional transportation problem with additional impurity restrictions. J. Stat. Manag. Syst. 10(3), 319–338 (2007). https://doi.org/10.1080/09720510.2007.10701257ArticleMATHGoogle Scholar
- Khurana, A., Arora, S.R.: The sum of a linear and a linear fractional transportation problem with the restricted and enhanced flow. J. Interdiscip. Math. 9(2), 373–383 (2006). https://doi.org/10.1080/09720502.2006.10700450ArticleMathSciNetMATHGoogle Scholar
- Liu, S.: Fractional transportation problem with fuzzy parameters. Soft Comput. (2015). https://doi.org/10.1007/s00500-015-1722-5ArticleGoogle Scholar
- Mohanaselvi, S., Ganesan, K.: A new approach for solving linear fuzzy fractional transportation problem. Int. J. Civ. Eng. Technol. 8(8), 1123–1129 (2017) Google Scholar
- Anukokila, P., Anju, A., Radhakrishnan, B.: Optimality of intuitionistic fuzzy fractional transportation problem of type-2. Arab J. Basic Appl. Sci. 26(1), 519–530 (2019). https://doi.org/10.1080/25765299.2019.1691895ArticleMATHGoogle Scholar
- Anukokila, P., Radhakrishnan, B.: Goal programming approach to the fully fuzzy fractional transportation problem. J. Taibah Univ. Sci. 13(1), 864–874 (2019). https://doi.org/10.1080/16583655.2019.1651520ArticleGoogle Scholar
- El Sayed, M.A., Abo-Sinna, M.A.: A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60(1), 1447–1463 (2021). https://doi.org/10.1016/j.aej.2020.10.063ArticleGoogle Scholar
- Rubin, P., Narasimhan, R.: Fuzzy goal programming with nested priorities. Fuzzy Sets Syst. 14, 115–129 (1984) ArticleMathSciNetMATHGoogle Scholar
- Charnes, A., Cooper, W.W.: Management models and industrial applications of linear programming. Manag. Sci. 4(1), 38–91 (1957). https://doi.org/10.1287/mnsc.4.1.38ArticleMathSciNetMATHGoogle Scholar
- Zimmermann, H.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978) ArticleMathSciNetMATHGoogle Scholar
- Diaz, J., Ja, D.: Finding a complete description of all efficient solutions to a multiobjective transportation problem (1979). Accessed 22 Nov 2020
- Isermann, H.: The enumeration of all efficient solutions for a linear multiple-objective transportation problem. Nav. Res. Logist. Q. 26(1), 123–139 (1979). https://doi.org/10.1002/nav.3800260112ArticleMathSciNetMATHGoogle Scholar
- Leberling, H.: On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets Syst. 6, 105–118 (1981) ArticleMathSciNetMATHGoogle Scholar
- Majumdar, M., Mitra, T.: Dynamic optimization with a non-convex technology: the case of a linear objective function. Rev. Econ. Stud. 50, 143–151 (1983) ArticleMATHGoogle Scholar
- Słowiński, R.: A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets Syst. 19(3), 217–237 (1986). https://doi.org/10.1016/0165-0114(86)90052-7ArticleMathSciNetMATHGoogle Scholar
- Ringuest, J., Rinks, D.: Interactive solutions for the linear multiobjective transportation problem. Eur. J. Oper. Res. 32, 96–106 (1987) ArticleMathSciNetMATHGoogle Scholar
- Bit, A., Biswal, M., Alam, S.: Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets Syst. 50, 135–141 (1992) ArticleMathSciNetMATHGoogle Scholar
- Verma, R., Biswal, M., Biswas, A.: Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions. Fuzzy Sets Syst. 91, 37–43 (1997) ArticleMathSciNetMATHGoogle Scholar
- Gen, M., Li, Y., Gen, M., Ida, K.: Solving multi-objective transportation problem by spanning tree-based genetic algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82, 2802–2810 (2000) Google Scholar
- Das, S., Goswami, A., Alam, S.: Multiobjective transportation problem with interval cost, source and destination parameters. Eur. J. oper. Res. 117, 100–112 (1999) ArticleMATHGoogle Scholar
- Li, L., Lai, K.: A fuzzy approach to the multiobjective transportation problem. Comput. Oper. Res. 27, 43–57 (2000) ArticleMathSciNetMATHGoogle Scholar
- Abd El-Wahed, W.: A multi-objective transportation problem under fuzziness Fuzzy Approach. Fuzzy Sets Syst. 117, 27–33 (2001) ArticleMathSciNetMATHGoogle Scholar
- Ammar, E., Youness, E.: Study on multiobjective transportation problem with fuzzy numbers. Appl. Math. Comput. 166, 241–253 (2005) MathSciNetMATHGoogle Scholar
- Abd El-Wahed, W.F., Lee, S.M.: Interactive fuzzy goal programming for multi-objective transportation problems. Omega 34, 158–166 (2006). https://doi.org/10.1016/j.omega.2004.08.006ArticleGoogle Scholar
- Zangiabadi, M., Maleki, H.R.: Fuzzy goal programming for multiobjective transportation problems. J. Appl. Math. Comput. 24(1–2), 449–460 (2007). https://doi.org/10.1007/BF02832333ArticleMathSciNetMATHGoogle Scholar
- Lau, H.C.W., Chan, T.M., Tsui, W.T., Chan, F.T.S., Ho, G.T.S., Choy, K.L.: A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Syst. Appl. 36(4), 8255–8268 (2009). https://doi.org/10.1016/j.eswa.2008.10.031ArticleGoogle Scholar
- Lohgaonkar, M., Bajaj, V.: Fuzzy approach to solve the multi-objective capacitated transportation problem. Int. J. Bioinform. 2, 10–14 (2010) Google Scholar
- Pal, B.B., Kumar, M., Sen, S.: Priority based fuzzy goal programming approach for fractional multilevel programming problems. Int. Rev. Fuzzy Math. 6(2), 1–14 (2011) Google Scholar
- Zaki, S., Allah, A.A., Geneedi, H., Elmekawy, A.; Efficient multiobjective genetic algorithm for solving transportation, assignment, and transshipment problems (2012). Accessed 22 Nov 2020
- Maity, G., Roy, S.K.: Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 11(1), 62–70 (2016). https://doi.org/10.1080/17509653.2014.988768ArticleGoogle Scholar
- Roy, S.K., Maity, G., Weber, G.-W.: Multi-objective two-stage grey transportation problem using utility function with goals. Artic. Cent. Eur. J. Oper. Res. (2017). https://doi.org/10.1007/s10100-016-0464-5ArticleMATHGoogle Scholar
- Biswas, A., Shaikh, A., Niaki, S.: Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments. Appl. Soft. Comput. 80, 628–649 (2019) ArticleGoogle Scholar
- Bera, R.K., Mondal, S.K.: Analyzing a two-staged multi-objective transportation problem under quantity dependent credit period policy using q-fuzzy number. Int. J. Appl. Comput. Math. (2020). https://doi.org/10.1007/s40819-020-00901-7ArticleMathSciNetMATHGoogle Scholar
Acknowledgements
First author (Yadvendra Kacher) acknowledges the financial support as Junior research fellowship (JRF) received from CSIR (Govt. of India) through HRDG(CSIR) senction Letter No./File No.: 09/1032(0019)/2019-EMR-I.
Author information
Authors and Affiliations
- Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India Yadvendra Kacher & Pitam Singh
- Yadvendra Kacher
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Contributions
Both the authors contributed equally in developing the whole article.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kacher, Y., Singh, P. A Comprehensive Literature Review on Transportation Problems. Int. J. Appl. Comput. Math 7, 206 (2021). https://doi.org/10.1007/s40819-021-01134-y
- Accepted : 26 August 2021
- Published : 24 September 2021
- DOI : https://doi.org/10.1007/s40819-021-01134-y
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Transportation problem
- Multi-objective transportation problem
- Optimal solution
- Fuzzy programming
- Goal programming